资源类型

期刊论文 482

会议视频 11

会议信息 1

会议专题 1

年份

2023 42

2022 59

2021 69

2020 35

2019 32

2018 29

2017 33

2016 39

2015 31

2014 13

2013 12

2012 11

2011 10

2010 7

2009 6

2008 5

2007 9

2006 9

2005 9

2004 5

展开 ︾

关键词

光伏发电 4

智能制造 4

复杂系统 3

2021全球十大工程成就 2

人工智能 2

优化 2

信息物理融合系统 2

光伏产业 2

分布式系统 2

动态规划 2

复杂性 2

碳中和 2

神经网络 2

管理 2

系统工程 2

过程系统工程 2

鲁棒性 2

2R-1C模型;嵌入式系统;参数估计;非迭代方法;二次型 1

展开 ︾

检索范围:

排序: 展示方式:

A new method for estimating the longevity and degradation of photovoltaic systems considering weather

Amir AHADI,Hosein HAYATI,Joydeep MITRA,Reza ABBASI-ASL,Kehinde AWODELE

《能源前沿(英文)》 2016年 第10卷 第3期   页码 277-285 doi: 10.1007/s11708-016-0400-3

摘要: The power output of solar photovoltaic (PV) systems is affected by solar radiation and ambient temperature. The commonly used evaluation techniques usually overlook the four weather states which are clear, cloudy, foggy, and rainy. In this paper, an ovel analytical model of the four weather conditions based on the Markov chain is proposed. The Markov method is well suited to estimate the reliability and availability of systems based on a continuous stochastic process. The proposed method is generic enough to be applied to reliability evaluation of PV systems and even other applications. Further aspects investigated include the new degradation model for reliability predication of PV modules. The results indicate that the PV module degradation over years, failures, and solar radiation must be considered in choosing an efficient PV system with an optimal design to achieve the maximum benefit of the PV system. For each aspect, a method is proposed, and the complete focusing methodology is expounded and validated using simulated point targets. The results also demonstrate the feasibility and applicability of the proposed method for effective modeling of the chronological aspects and stochastic characteristics of solar cells as well as the optimal configuration and sizing of large PV plants in terms of cost and reliability.

关键词: photovoltaic (PV) systems     solar cell     Markov model     weather effects    

thermoelectric generator and water-cooling assisted high conversion efficiency polycrystalline silicon photovoltaic

Zekun LIU, Shuang YUAN, Yi YUAN, Guojian LI, Qiang WANG

《能源前沿(英文)》 2021年 第15卷 第2期   页码 358-366 doi: 10.1007/s11708-020-0712-1

摘要: Solar energy has been increasing its share in the global energy structure. However, the thermal radiation brought by sunlight will attenuate the efficiency of solar cells. To reduce the temperature of the photovoltaic (PV) cell and improve the utilization efficiency of solar energy, a hybrid system composed of the PV cell, a thermoelectric generator (TEG), and a water-cooled plate (WCP) was manufactured. The WCP cannot only cool the PV cell, but also effectively generate additional electric energy with the TEG using the waste heat of the PV cell. The changes in the efficiency and power density of the hybrid system were obtained by real time monitoring. The thermal and electrical tests were performed at different irradiations and the same experiment temperature of 22°C. At a light intensity of 1000 W/m , the steady-state temperature of the PV cell decreases from 86.8°C to 54.1°C, and the overall efficiency increases from 15.6% to 21.1%. At a light intensity of 800 W/m , the steady-state temperature of the PV cell decreases from 70°C to 45.8°C, and the overall efficiency increases from 9.28% to 12.59%. At a light intensity of 400 W/m , the steady-state temperature of the PV cell decreases from 38.5°C to 31.5°C, and the overall efficiency is approximately 3.8%, basically remain unchanged.

关键词: photovoltaic (PV)     thermoelectric generator     conversion efficiency     hybrid energy systems     water-cooled plate (WCP)    

Generating capacity adequacy evaluation of large-scale, grid-connected photovoltaic systems

Amir AHADI,Seyed Mohsen MIRYOUSEFI AVAL,Hosein HAYATI

《能源前沿(英文)》 2016年 第10卷 第3期   页码 308-318 doi: 10.1007/s11708-016-0415-9

摘要: Large-scale, grid-connected photovoltaic systems have become an essential part of modern electric power distribution systems. In this paper, a novel approach based on the Markov method has been proposed to investigate the effects of large-scale, grid-connected photovoltaic systems on the reliability of bulk power systems. The proposed method serves as an applicable tool to estimate performance (e.g., energy yield and capacity) as well as reliability indices. The Markov method framework has been incorporated with the multi-state models to develop energy states of the photovoltaic systems in order to quantify the effects of the photovoltaic systems on the power system adequacy. Such analysis assists planners to make adequate decisions based on the economical expectations as well as to ensure the recovery of the investment costs over time. The failure states of the components of photovoltaic systems have been considered to evaluate the sensitivity analysis and the adequacy indices including loss of load expectation, and expected energy not supplied. Moreover, the impacts of transitions between failures on the reliability calculations as well as on the long- term operation of the photovoltaic systems have been illustrated. Simulation results on the Roy Billinton test system has been shown to illustrate the procedure of the proposed frame work and evaluate the reliability benefits of using large-scale, grid-connected photovoltaic system on the bulk electric power systems. The proposed method can be easily extended to estimate the operating and maintenance costs for the financial planning of the photovoltaic system projects.

关键词: adequacy assessment     Markov method     large-scale grid-connected photovoltaic(PV) systems     long-term operation    

Dynamic characteristics and improved MPPT control of PV generator

Houda BRAHMI, Rachid DHIFAOUI

《能源前沿(英文)》 2013年 第7卷 第3期   页码 342-350 doi: 10.1007/s11708-013-0242-1

摘要: This paper presents a mathematical model of photovoltaic (PV) module and gives a strategy to calculate online the maximum power point (MPP). The variation of series and shunt resistor are taken into account in the model and are dynamically identified using the Newton-Raphson algorithm. The effectiveness of the proposed model is verified by laboratory experiments obtained by implementing the model on the dSPACE DS1104 board.

关键词: modeling of photovoltaic (PV) generator     maximum power point tracking (MPPT)     estimation parameters     real time controller    

Application of metal oxides-based nanofluids in PV/T systems: a review

《能源前沿(英文)》 2022年 第16卷 第3期   页码 397-428 doi: 10.1007/s11708-021-0758-8

摘要: Having the wide application of metal oxides in energy technologies, in recent years, many researchers tried to increase the performance of the PV/T system by using metal oxide-based nanofluids (NFs) as coolants or optical filters or both at the same time. This paper summarizes recent research activities on various metal oxides (Al2O3, TiO2, SiO2, Fe3O4, CuO, ZnO, MgO)-based NFs performance in the PV/T system regarding different significant parameters, e.g., thermal conductivity, volume fraction, mass flowrate, electrical, thermal and overall efficiency, etc. By conducting a comparative study among the metal oxide-based NFs, Al2O3/SiO2-water NFs are mostly used to achieve maximum performance. The Al2O3-water NF has a prominent heat transfer feature with a maximum electrical efficiency of 17%, and a maximum temperature reduction of PV module of up to 36.9°C can be achieved by using the Al2O3-water NF as a coolant. Additionally, studies suggest that the PV cell’s efficiency of up to 30% can be enhanced by using a solar tracking system. Besides, TiO2-water NFs have been proved to have the highest thermal efficiency of 86% in the PV/T system, but TiO2 nanoparticles could be hazardous for human health. As a spectral filter, SiO2-water NF at a size of 5 nm and a volume fraction of 2% seems to be very favorable for PV/T systems. Studies show that the combined use of NFs as coolants and spectral filters in the PV/T system could provide a higher overall efficiency at a cheaper rate. Finally, the opportunities and challenges of using NFs in PV/T systems are also discussed.

关键词: metal oxide     nanofluids (NFs)     nanoparticles (NPs)     optical filter     PV/T systems     solar energy    

Potential and economic viability of standalone hybrid systems for a rural community of Sokoto, North-west

O. D. OHIJEAGBON,Oluseyi. O AJAYI

《能源前沿(英文)》 2014年 第8卷 第2期   页码 145-159 doi: 10.1007/s11708-014-0304-z

摘要: An assessment of the potential and economic viability of standalone hybrid systems for an off-grid rural community of Sokoto, North-west Nigeria was conducted. A specific electric load profile was developed to suite the community consisting 200 homes, a school and a community health center. The data obtained from the Nigeria Meteorological Department, Oshodi, Lagos (daily mean wind speeds, and daily global solar radiation for 24 years from 1987 to 2010) were used. An assessment of the design that will optimally meet the daily load demand with a loss of load probability (LOLP) of 0.01 was performed, considering 3 stand-alone applications of photovoltaic (PV), wind and diesel, and 3 hybrid designs of wind-PV, wind-diesel, and solar-diesel. The diesel standalone system (DSS) was taken as the basis of comparison as the experimental location has no connection to a distribution network. The HOMER® software optimizing tool was engaged following the feasibility analysis with the RETScreen software. The wind standalone system (WSS) was found to be the optimal means of producing renewable electricity in terms of life cycle cost as well as levelised cost of producing energy at $0.15/(kW·h). This is competitive with grid electricity, which is presently at a cost of approximately $0.09/(kW·h) and 410% better than the conventional DSS at a levelized cost of energy (LCOE) of $0.62/kWh. The WSS is proposed for communities around the study site.

关键词: photovoltaic (PV) power     wind power     solar-wind hybrid     cost per kilowatt-hour     clean energy    

Estimation of environmental effects of photovoltaic generation in North-west China

Mengjia REN, Anastasia SHCHERBAKOVA

《能源前沿(英文)》 2013年 第7卷 第4期   页码 535-543 doi: 10.1007/s11708-013-0280-8

摘要: In estimating emissions reductions brought about by renewables in China, much of existing research assumes that renewables displace coal power. In this paper, this assumption is challenged and the potential environmental effects of photovoltaic (PV) power in North-west China are reevaluated when the marginal generator actually being displaced is taken into account. The annual PV power generation in the North-west Grid is estimated, in this paper, to be as high as 17900 GW·h in 2015, roughly equaling to the output of 1.5 nuclear power plants in the US today. The total associated emission reduction in 2015 will at most be 0.36 percent of SO and 0.25 percent of NO emissions from their 2010 levels in China. Further, PV power may render no emissions reduction at all if it displaces hydropower, which is often used to meet peak demand in the North-west Grid in China. These results imply that a more cost-effective area of focus in the short-term may be on desulfurization and denitrification technologies for coal plants.

关键词: photovoltaic (PV)     emission reduction     North-west China     marginal generator    

PV/T太阳能热泵系统的性能研究

裴刚,季杰,何伟,孙炜

《中国工程科学》 2006年 第8卷 第9期   页码 49-56

摘要:

提出一种新型的太阳能热泵系统——PV/T-SAHP系统,该系统具有光电/光热综合利用的功能;建立了PV/T-SAHP系统的动态模型,对该系统的运行特性进行了数值模拟。结果显示,PV/T-SAHP系统的电效率和热效率较传统的太阳能系统和热泵系统都有明显提高,运行能耗较普通热泵大幅度降低;系统PV/T蒸发器的面积、管间距、倾角等参数的变化对电效率和热性能会产生比较大的影响

关键词: 太阳能热泵     光电光热综合利用     PV/T     SAHP    

Fractional order extremum seeking approach for maximum power point tracking of photovoltaic panels

Ammar NEÇAIBIA,Samir LADACI,Abdelfatah CHAREF,Jean Jacques LOISEAU

《能源前沿(英文)》 2015年 第9卷 第1期   页码 43-53 doi: 10.1007/s11708-014-0343-5

摘要: Due to the high interest in renewable energy and diversity of research regarding photovoltaic (PV) array, a great research effort is focusing nowadays on solar power generation and its performance improvement under various weather conditions. In this paper, an integrated framework was proposed, which achieved both maximum power point tracking (MPPT) and minimum ripple signals. The proposed control scheme was based on extremum-seeking (ES) combined with fractional order systems (FOS). This auto-tuning strategy was developed to maximize the PV panel output power through the regulation of the voltage input to the DC/DC converter in order to lead the PV system steady-state to a stable oscillation behavior around the maximum power point (MPP). It is shown that fractional order operators can improve the plant dynamics with respect to time response and disturbance rejection. The effectiveness of the proposed controller scheme is illustrated with simulations using measured solar radiation data.

关键词: extremum seeking (ES)     fractional order control (FOC)     fractional calculus     photovoltaic (PV) panel     maximum power point tracking (MPPT)    

Real-time simulation platform for photovoltaic system with a boost converter using MPPT algorithm in

Geethanjali PURUSHOTHAMAN, Vimisha VENUGOPALAN, Aleena Mariya VINCENT

《能源前沿(英文)》 2013年 第7卷 第3期   页码 373-379 doi: 10.1007/s11708-013-0272-8

摘要: Recently, real-time simulation of renewable energy sources are indispensible for evaluating the performance of the maximum power point tracking (MPPT) controller, especially in the photovoltaic (PV) system in order to reduce cost in the testing phase. Nowadays, real time PV simulators are obtained by using analog and/or digital components. In this paper, a real-time simulation of a PV system with a boost converter was proposed using only the digital signal processor (DSP) processor with two DC voltage sources to emulate the temperature and irradiation in the PV system. A MATLAB/Simulink environment was used to develop the real-time PV system with a boost converter into a C-program and build it into a DSP controller TMS320F28335. Besides, the performance of the real-time DSP-based PV was tested in different temperature and irradiation conditions to observe the P-V and V-I characteristics. Further, the performance of the PV with a boost converter was tested at different temperatures and irradiations using MPPT algorithms. This scheme was tested through simulation and the results were validated with that of standard conditions given in the PV data sheets. Implementation of this project helped to attract more researchers to study renewable energy applications without real sources. This might facilitate the study of PV systems in a real-time scenario and the evaluation of what should be expected for PV modules available in the market.

关键词: photovoltaic (PV) module     digital signal processor (DSP) controller     power electronic converter     real-time simulation    

Assessment of a fuzzy logic based MRAS observer used in a photovoltaic array supplied AC drive

Bhavnesh KUMAR, Yogesh K CHAUHAN, Vivek SHRIVASTAVA

《能源前沿(英文)》 2014年 第8卷 第1期   页码 81-89 doi: 10.1007/s11708-014-0295-9

摘要: In this paper a fuzzy logic (FL) based model reference adaptive system (MRAS) speed observer for high performance AC drives is proposed. The error vector computation is made based on the rotor-flux derived from the reference and the adaptive model of the induction motor. The error signal is processed in the proposed fuzzy logic controller (FLC) for speed adaptation. The drive employs an indirect vector control scheme for achieving a good closed loop speed control. For powering the drive system, a standalone photovoltaic (PV) energy source is used. To extract the maximum power from the PV source, a constant voltage controller (CVC) is also proposed. The complete drive system is modeled in MATLAB/Simulink and the performance is analyzed for different operating conditions.

关键词: induction motor drive     fuzzy logic (FL) control     model reference adaptive system (MRAS)     photovoltaic (PV) array     vector control    

A control scheme with performance prediction for a PV fed water pumping system

Ramesh K GOVINDARAJAN,Pankaj Raghav PARTHASARATHY,Saravana Ilango GANESAN

《能源前沿(英文)》 2014年 第8卷 第4期   页码 480-489 doi: 10.1007/s11708-014-0334-6

摘要: This paper focuses on modeling and performance predetermination of a photovoltaic (PV) system with a boost converter fed permanent magnet direct current (PMDC) motor-centrifugal pump load, taking the converter losses into account. Sizing is done based on the maximum power generated by the PV array at the average irradiation. Hence optimum sizing of the PV array for the given irradiation at the geographical location of interest is obtained using the predetermined values. The analysis presented here involves systems employing maximum power point tracking (MPPT) as they are more efficient than directly coupled systems. However, the voltage and power of the motor might rise above rated values for irradiations greater than the average when employing MPPT, hence a control scheme has been proposed to protect the PMDC motor from being damaged during these conditions. This control scheme appropriately chooses the optimum operating point of the system, ensuring long-term sustained operation. The numerical simulation of the system is performed in Matlab/Simulink and is validated with experimental results obtained from a 180 V, 0.5 hp PMDC motor coupled to a centrifugal pump. The operation of the system with the proposed control scheme is verified by varying the irradiation levels and the relevant results are presented.

关键词: photovoltaic system     boost converter     maximum power point tracking (MPPT)     DC permanent-magnet motor     centrifugal pump    

Emerging technologies to power next generation mobile electronic devices using solar energy

Dewei JIA , Yubo DUAN , Jing LIU ,

《能源前沿(英文)》 2009年 第3卷 第3期   页码 262-288 doi: 10.1007/s11708-009-0015-z

摘要: Mobile electronic devices such as MP3, mobile phones, and wearable or implanted medical devices have already or will soon become a necessity in peoples’ lives. However, the further development of these devices is restricted not only by the inconvenient charging process of the power module, but also by the soaring prices of fossil fuel and its downstream chain of electricity manipulation. In view of the huge amount of solar energy fueling the world biochemically and thermally, a carry-on electricity harvester embedded in portable devices is emerging as a most noteworthy research area and engineering practice for a cost efficient solution. Such a parasitic problem is intrinsic in the next generation portable devices. This paper is dedicated to presenting an overview of the photovoltaic strategy in the chain as a reference for researchers and practitioners committed to solving the problem.

关键词: photovoltaic conversion     energy harvesting     solar cell     maximum power point track algorithm     PV electricity storage     mobile/standalone PV application    

Performance enhancement of partially shaded solar PV array using novel shade dispersion technique

Namani RAKESH,T. Venkata MADHAVARAM

《能源前沿(英文)》 2016年 第10卷 第2期   页码 227-239 doi: 10.1007/s11708-016-0405-y

摘要: Solar photo voltaic array (SPVA) generates a smaller amount of power than the standard rating of the panel due to the partial shading effect. Since the modules of the arrays receive different solar irradiations, the P-V characteristics of photovoltaic (PV) arrays contain multiple peaks or local peaks. This paper presents an innovative method (magic square) in order to increase the generated power by configuring the modules of a shaded photovoltaic array. In this approach, the physical location of the modules in the total cross tied (TCT) connected in the solar PV array is rearranged based on the magic square arrangement pattern. This connection is done without altering any electrical configurations of the modules in the PV array. This method can distribute the shading effect over the entire PV array, without concentrating on any row of modules and can achieve global peaks. For different types of shading patterns, the output power of the solar PV array with the proposed magic square configuration is compared with the traditional configurations and the performance is calculated. This paper presents a new reconfiguration technique for solar PV arrays, which increases the PV power under different shading conditions. The proposed technique facilitates the distribution of the effect of shading over the entire array, thereby, reducing the mismatch losses caused by partial shading. The theoretical calculations are tested through simulations in Matlab/Simulink to validate the results. A comparison of power loss for different types of topologies under different types of shading patterns for a 4 × 4 array is also explained.

关键词: photovoltaic cells     mismatch loss     shading patterns     partial shading     magic square     power enhancement     global peaks and total cross tied (TCT)    

Benefit-based cost allocation for residentially distributed photovoltaic systems in China: A cooperative

Xi LUO, Xiaojun LIU, Yanfeng LIU, Jiaping LIU, Yaxing WANG

《工程管理前沿(英文)》 2021年 第8卷 第2期   页码 271-283 doi: 10.1007/s42524-019-0083-7

摘要: Distributed photovoltaic (PV) systems have constantly been the key to achieve a low-carbon economy in China. However, the development of Chinese distributed PV systems has failed to meet expectations because of their irrational profit and cost allocations. In this study, the methodology for calculating the levelized cost of energy (LCOE) for PV is thoroughly discussed to address this issue. A mixed-integer linear programming model is built to determine the optimal system operation strategy with a benefit analysis. An externality-corrected mathematical model based on Shapley value is established to allocate the cost of distributed PV systems in 15 Chinese cities between the government, utility grid and residents. Results show that (i) an inverse relationship exists between the LCOEs and solar radiation levels; (ii) the government and residents gain extra benefits from the utility grid through net metering policies, and the utility grid should be the highly subsidized participant; (iii) the percentage of cost assigned to the utility grid and government should increase with the expansion of battery bank to weaken the impact of demand response on increasing theoretical subsidies; and (iv) apart from the LCOE, the local residential electricity prices remarkably impact the subsidy calculation results.

关键词: solar photovoltaic     cost allocation     cooperative game theory     Shapley value     mixed-integer linear programming     levelized cost of energy    

标题 作者 时间 类型 操作

A new method for estimating the longevity and degradation of photovoltaic systems considering weather

Amir AHADI,Hosein HAYATI,Joydeep MITRA,Reza ABBASI-ASL,Kehinde AWODELE

期刊论文

thermoelectric generator and water-cooling assisted high conversion efficiency polycrystalline silicon photovoltaic

Zekun LIU, Shuang YUAN, Yi YUAN, Guojian LI, Qiang WANG

期刊论文

Generating capacity adequacy evaluation of large-scale, grid-connected photovoltaic systems

Amir AHADI,Seyed Mohsen MIRYOUSEFI AVAL,Hosein HAYATI

期刊论文

Dynamic characteristics and improved MPPT control of PV generator

Houda BRAHMI, Rachid DHIFAOUI

期刊论文

Application of metal oxides-based nanofluids in PV/T systems: a review

期刊论文

Potential and economic viability of standalone hybrid systems for a rural community of Sokoto, North-west

O. D. OHIJEAGBON,Oluseyi. O AJAYI

期刊论文

Estimation of environmental effects of photovoltaic generation in North-west China

Mengjia REN, Anastasia SHCHERBAKOVA

期刊论文

PV/T太阳能热泵系统的性能研究

裴刚,季杰,何伟,孙炜

期刊论文

Fractional order extremum seeking approach for maximum power point tracking of photovoltaic panels

Ammar NEÇAIBIA,Samir LADACI,Abdelfatah CHAREF,Jean Jacques LOISEAU

期刊论文

Real-time simulation platform for photovoltaic system with a boost converter using MPPT algorithm in

Geethanjali PURUSHOTHAMAN, Vimisha VENUGOPALAN, Aleena Mariya VINCENT

期刊论文

Assessment of a fuzzy logic based MRAS observer used in a photovoltaic array supplied AC drive

Bhavnesh KUMAR, Yogesh K CHAUHAN, Vivek SHRIVASTAVA

期刊论文

A control scheme with performance prediction for a PV fed water pumping system

Ramesh K GOVINDARAJAN,Pankaj Raghav PARTHASARATHY,Saravana Ilango GANESAN

期刊论文

Emerging technologies to power next generation mobile electronic devices using solar energy

Dewei JIA , Yubo DUAN , Jing LIU ,

期刊论文

Performance enhancement of partially shaded solar PV array using novel shade dispersion technique

Namani RAKESH,T. Venkata MADHAVARAM

期刊论文

Benefit-based cost allocation for residentially distributed photovoltaic systems in China: A cooperative

Xi LUO, Xiaojun LIU, Yanfeng LIU, Jiaping LIU, Yaxing WANG

期刊论文